
Impedance Explanation 
 
Here are few more examples on the subject of impedance looking 
at it from a different viewing angle. As a rule impedance always 
represents a ratio of a force or other physical imposition capable of 
power delivery, to the reaction that such imposition can sustain, 
where the reaction is defined such that the product of the 
imposition and sustained reaction has the units of energy per unit 
time, or power. 
  
Over all impedance is a very constructive concept in the subject of 
power delivery. In general it provides information about the load 
being driven by the power source. For the output torque of an 
automobile transmission, the impedance is the output torque 
divided by the angular velocity that such torque will sustain. 
  
For a jet engine, the impedance is the thrust (force) divided by the 
air-speed that such thrust will sustain, and for a fluid pump, the 
impedance is the pressure it delivers divided by the volume flow 
rate that such pressure sustains. 
  
For most mechanical systems, a device's impedance varies with the 
conditions of the situation (such as what slope the automobile is 
climbing, or the viscosity of the fluid being pumped by the pump), 
but an electrical impedance will either be a constant value or it will 
depend on the frequency component of the driving signal. 
  
Below, an electrical impedance Z is a two-terminal device which 
transports electrical charge between its terminals at a time-rate I, 
measured in Coulombs per second (Amperes), such that I is 
proportional to the voltage V (electrical pressure) applied across 
the two terminals. Each circle represents a two-terminal charge 
pump known as a voltage source, which can sustain the electrical 
pressure difference given by its indicated voltage V, E1 or E2 as 
indicated. 



 The value of the impedance is Z, and as shown above it represents 
the constant of proportionality in the relationship between the 
voltage V and the current I. This relationship is known as Ohm's 
Law, which states:V = ZI, 
 
where V is the difference in the electrical pressures applied across 
the two electrodes, and Z is measured in Ohms (Volts per Ampere). 
The pressure difference V is applied directly across the electrodes 
of the instrument measuring impedance Z, but at (b), each pressure 
E1 and E2 is generated with respect to an ambient (ground) 
pressure. Thus, E1 and E2 are referred to as the electric 
"potentials" of the terminals connected to the impedance. 
 
This is the more typical means of signal measurement used in 
electronic circuits. Thus, the electrical pressure difference V 
applied across the two terminals is usually measured as the 
potential difference E1 - E2. For any given potential difference 
(voltage) across the two terminals, as the impedance Z increases, 
the current I decreases proportionately. Likewise, for any given 
impedance Z, if the voltage is increased, the current must increase 
proportionately. 
  
In general, the values of E, V and I are expressed as complex, 
phasor values, having a common sinusoidal frequency throughout 
the equation. As such, any real-valued voltage applied across the 
impedance can be accurately represented as a superposition of 
sinusoidal components, as implied by the Fourier Integral Theorem. 
  
The use of impedance theory (aka classical network theory) has 
concentrated its interests in three natural and theoretically 
fundamental types of impedance. The simplest of these forms is 
the resistance, R, whose current at any given time is proportional 
to the applied voltage at that time. The other two impedances are 
known as the capacitance, C, and the inductance, L. For these, the 



time-dependent functions v(t) and i(t) obey the respective 
relationships, 
  
v(t) = L di/dt, for the inductor and 
i(t) = C dv/dt, for the capacitor, 
  
where the conventional dx/dt notation denotes the time rate of 
change in the arbitrary variable x. Because the inductor cannot 
change its current rapidly in the absence of a large voltage, and 
because the capacitor cannot change its voltage rapidly in the 
absence of a large current, these devices have some very useful 
capabilities in frequency discrimination circuits. Fundamental 
theory of Laplace Transforms readily shows that the capacitor's 
impedance has the magnitude of 1/wC, where w is the angular 
frequency component under consideration; and the inductor's 
impedance has the magnitude wL. It also follows that for any given 
signal frequency component, the inductor's current lags its voltage 
by 90 degrees in phase, whereas in contrast the capacitor's current 
leads it's own voltage by 90 degrees in phase. As such, for a series 
wiring of a capacitor and an inductor, where the current i(t) is the 
same in both, their voltage components for any given frequency 
are of opposite sign, so they tend to cancel each other out as seen 
by the external circuitry. So their series impedance is consequently 
smaller than either of their individual impedances. Because their 
voltages subtract in accordance with Kirchhoff's Loop Law, the 
impedance of the series combination is wL - 1/wC. Likewise, when 
the two are wired in parallel, so that they have the same voltage, 
their currents are of opposite sign and thereby partially cancel each 
other out. As such, the impedance of their parallel combination as 
seen externally is larger than the impedance of either one 
component. These neutralization characteristics are, for both these 
wirings, most profound at the angular frequency given by the 
reciprocal of the square root of the product LC, for this is the 
frequency at which their impedances are equal and opposite. 
  



  
 
Note: Here also few lines on the topic of dielectric we’ve spoke 
about .Dielectric constant refers to the response of the substance to 
an electric field, which depends on the chemistry of the substance. 
They are not physically related in any obvious way. It is possible 
to find two electrolyte liquids with very similar densities and 
different dielectric constants or very similar dielectric constants 
and different densities. 
   
Here is also very good website in reference of the above text you 
might find useful…. 

  
Multi-loop Circuits and Kirchoff's Rules 
Before talking about what a multi-loop circuit is, it is helpful to 
define two terms, junction and branch. 
 
A junction is a point where at least three circuit paths meet. 
 
A branch is a path connecting two junctions. 
 
In the circuit below, there are two junctions, labeled a and b. There 
are three branches: these are the three paths from a to b. 
	   
Multi-loop circuits 
In a circuit involving one battery and a number of resistors in 
series and/or parallel, the resistors can generally be reduced to a 
single equivalent resistor. With more than one battery, the situation 
is trickier. If all the batteries are part of one branch they can be 
combined into a single equivalent battery. Generally, the batteries 
will be part of different branches, and another method has to be 
used to analyze the circuit to find the current in each branch. 
Circuits like this are known as multi-loop circuits. 
 
Finding the current in all branches of a multi-loop circuit (or the 
emf of a battery or the value of a resistor) is done by following 



guidelines known as Kirchoff's rules. These guidelines also apply 
to very simple circuits. 
Kirchoff's first rule : the junction rule. The sum of the currents 
coming in to a junction is equal to the sum leaving the junction. 
(Basically this is conservation of charge) 
 
Kirchoff's second rule : the loop rule. The sum of all the potential 
differences around a complete loop is equal to zero. (Conservation 
of energy) 
 
There are two different methods for analyzing circuits. The 
standard method in physics, which is the one followed by the 
textbook, is the branch current method. There is another method, 
the loop current method, but we won't worry about that one. 
 
The branch current method 
To analyze a circuit using the branch-current method involves 
three steps: 

 • Label the current and the current direction in each 
branch. Sometimes it's hard to tell which is the correct 
direction for the current in a particular loop. That does NOT 
matter. Simply pick a direction. If you guess wrong, you¹ll 
get a negative value. The value is correct, and the negative 
sign means that the current direction is opposite to the way 
you guessed. You should use the negative sign in your 
calculations, however. 
 • Use Kirchoff's first rule to write down current 
equations for each junction that gives you a different 
equation. For a circuit with two inner loops and two junctions, 
one current equation is enough because both junctions give 
you the same equation. 
 • Use Kirchoff's second rule to write down loop 
equations for as many loops as it takes to include each branch 
at least once. To write down a loop equation, you choose a 
starting point, and then walk around the loop in one direction 



until you get back to the starting point. As you cross batteries 
and resistors, write down each voltage change. Add these 
voltage gains and losses up and set them equal to zero. 

 
When you cross a battery from the - side to the + side, that's a 
positive change. Going the other way gives you a drop in potential, 
so that's a negative change. 
 
When you cross a resistor in the same direction as the current, 
that's also a drop in potential so it's a negative change in potential.  
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Crossing a resistor in the opposite direction as the current gives 
you a positive change in potential. 
An example 
Running through an example should help clarify how Kirchoff's 
rules are used. Consider the circuit below: 
 
 
Step 1 of the branch current method has already been done. The 
currents have been labeled in each branch of the circuit, and the 
directions are shown with arrows. Again, you don't have to be sure 
of these directions at this point. Simply choose directions, and if 
any of the currents come out to have negative signs, all it means is 
that the direction of that current is opposite to the way you've 
shown on your diagram. 
 
Applying step 2 of the branch current method means looking at the 
junctions, and writing down a current equation. At junction a, the 
total current coming in to the junction equals the total current 
flowing away. This gives:	  	  at junction a : I1 = I2 + I3 
 
If we applied the junction rule at junction b, we'd get the same 
equation. So, applying the junction rule at one of the junctions is 
all we need to do. In some cases you will need to get equations 
from more than one junction, but you'll never need to get an 
equation for every junction. 



 
 
 
There are three unknowns, the three currents, so we need to have 
three equations. One came from the junction rule; the other two 
come from going to step 3 and applying the loop rule. There are 
three loops to use in this circuit: the inside loop on the left, the 
inside loop on the right, and the loop that goes all the way around 
the outside. We just need to write down loop equations until each 
branch has been used at least once, though, so using any two of the 
three loops in this case is sufficient. 
 
When applying the loop equation, the first step is to choose a 7 
starting point on one loop. Then walk around the loop, in either 
direction, and write down the change in potential when you go 
through a battery or resistor. When the potential increases, the 
change is positive; when the potential decreases, the change is 
negative. When you get back to your starting point, add up all the 
potential changes and set this sum equal to zero, because the net 
change should be zero when you get back to where you started. 
 
When you pass through a battery from minus to plus, that's a 
positive change in potential, equal to the emf of the battery. If you 
go through from plus to minus, the change in potential is equal to 
minus the emf of the battery. 
 
Current flows from high to low potential through a resistor. If you 
pass through a resistor in the same direction as the current, the 
potential, given by IR, will decrease, so it will have a minus sign. 
If you go through a resistor opposite to the direction of the current, 
you're going from lower to higher potential, and the IR change in 
potential has a plus sign. 
 
Keeping all this in mind, let's write down the loop equation for the 
inside loop on the left side. Picking a starting point as the bottom 
left corner, and moving clockwise around the loop gives: 



	   
Make sure you match the current to the resistor; there is one 
current for each branch, and a loop has at least two branches in it. 
The inner loop on the right side can be used to get the second loop 
equation. Starting in the bottom right corner and going counter-
clockwise gives: 
	   
Plugging in the values for the resistances and battery emf's gives, 
for the three equations: 
	   
The simplest way to solve this is to look at which variable shows 
up in both loop equations (equations 2 and 3), solve for that 
variable in equation 1, and substitute it in in equations 2 and 3. 
8 
 
Rearranging equation 1 gives: 
	   
Substituting this into equation 2 gives: 
	   
Making the same substitution into equation 3 gives: 
	   
This set of two equations in two unknowns can be reduced to one 
equation in one unknown by multiplying equation 4 by 5 (the 
number 5, not equation 5!) and adding the result to equation 5. 
	   
Substituting this into equation 5 gives:	  	  I2 = ( -4 + 1.5 ) / 5 = -0.5 A 
 
The negative sign means that the current is 0.5 A in the direction 
opposite to that shown on the diagram. Solving for the current in 
the middle branch from equation 1 gives:	  	  I3 = 1.5 - (-0.5) = 2.0 A 
 
An excellent way to check your answer is to go back and label the 
voltage at each point in the circuit. If everything is consistent, your 
answer is fine. To label the voltage, the simplest thing to do is 
choose one point to be zero volts. It's just the difference in 



potential between points that matters, so you can define one point 
to be whatever potential you think is convenient, and use that as 
your reference point. My habit is to set the negative side of one of 
the batteries to zero volts, and measure everything else with 
respect to that. 
	   
In this example circuit, when the potential at all the points is 
labeled, everything is consistent. What this means is that when you 
go from junction b to junction a by any route, and figure out what 
the potential at a is, you get the same answer for each route. If you 
got different answers, that would be a big hint that you did 
something wrong in solving for the currents. Note also that you 
have to account for any of the currents coming out to be negative, 
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and going the opposite way from what you had originally drawn. 
One final note: you can use this method of circuit analysis to solve 
for more things than just the current. If one or more of the currents 
was known (maybe the circuit has an ammeter or two, measuring 
the current magnitude and direction in one or two branches) then 
an unknown battery emf or an unknown resistance could be found 
instead. 
 
Meters 
 
It is often useful to measure the voltage or current in a circuit. A 
voltmeter is a device used to measure voltage, while a meter 
measuring current is an ammeter. Meters are either analog or 
digital devices. Analog meters show the output on a scale with a 
needle, while digital devices produce a digital readout. Analog 
voltmeters and ammeters are both based on a device called a 
galvanometer. Because this is a magnetic device, we'll come back 
to that in the next chapter. Digital voltmeters and ammeters 
generally rely on measuring the voltage across a known resistor, 
and converting that voltage to a digital value for display. 
 



 
Voltmeters 
	   
Resistors in parallel have the same voltage across them, so if you 
want to measure the voltage across a circuit element like a resistor, 
you place the voltmeter in parallel with the resistor. The voltmeter 
is shown in the circuit diagram as a V in a circle, and it acts as 
another resistor. To prevent the voltmeter from changing the 
current in the circuit (and therefore the voltage across the resistor), 
the voltmeter must have a resistance much larger than the resistor's. 
With a large voltmeter resistance, hardly any of the current in the 
circuit makes a detour through the meter. 
 
Ammeters 
	   
Remember that resistors in series have the same current flowing 
through them. An ammeter, then, must be placed in series with a 
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resistor to measure the current through the resistor. On a circuit 
diagram, an ammeter is shown as an A in a circle. Again, the 
ammeter acts as a resistor, so to minimize its impact on the circuit 
it must have a small resistance relative to the resistance of the 
resistor whose current is being measured. 
 
RC Circuits 
 
Resistors are relatively simple circuit elements. When a resistor or 
a set of resistors is connected to a voltage source, the current is 
constant. If a capacitor is added to the circuit, the situation changes. 
In a simple series circuit, with a battery, resistor, and capacitor in 
series, the current will follow an exponential decay. The time it 
takes to decay is determined by the resistance (R) and capacitance 
(C) in the circuit. 
 



A capacitor is a device for storing charge. In some sense, a 
capacitor acts like a temporary battery. When a capacitor is 
connected through a resistor to a battery, charge from the battery is 
stored in the capacitor. This causes a potential difference to build 
up across the capacitor, which opposes the potential difference of 
the battery. As this potential difference builds, the current in the 
circuit decreases. 
 
If the capacitor is connected to a battery with a voltage of Vo, the 
voltage across the capacitor varies with time according to the 
equation: 
 
The current in the circuit varies with time according to the 
equation: 
	   
Graphs of voltage and current as a function of time while the 
capacitor charges are shown below. 
	   
The product of the resistance and capacitance, RC, in the circuit is 
known as the time constant. This is a measure of how fast the 
capacitor will charge or discharge. 
 
After charging a capacitor with a battery, the battery can be 
removed and the capacitor can be used to supply current to the 
circuit. In this case, the current obeys the same equation as above, 
decaying away exponentially, and the voltage across the capacitor 
will vary as: 
	   
Graphs of the voltage and current while the capacitor discharges 
are shown here. The current is shown negative because it is 
opposite in direction to the current when the capacitor charges. 
	   
 
 
 
Currents in nerve cells 



In the human body, signals are sent back and forth between 
muscles and the brain, as well as from our sensory receptors (eyes, 
ears, touch sensors, etc.) to the brain, along nerve cells. These 
nerve impulses are electrical signals that are transmitted along the 
body, or axon, of a nerve cell. 
 
The axon is simply a long tube built to carry electrical signals. A 
potential difference of about 70 mV exists across the cell 
membrane when the cell is in its resting state; this is due to a small 
imbalance in the concentration of ions inside and outside the cell. 
The ions primarily responsible for the propagation of a nerve 
impulse are potassium (K+) and sodium <NA+. 
 
The potential inside the cell is at -70 mV with respect to the 
outside. Consider one point on the axon. If the potential inside the 
axon at that point is raised by a small amount, nothing much 
happens. If the potential inside is raised to about -55 mV, however, 
the permeability of the cell membrane changes. This causes 
sodium ions to enter the cell, raising the potential inside to about 
+50 mV. At this point the membrane becomes impermeable to 
sodium again, and potassium ions flow out of the cell, restoring the 
axon at that point to its rest state. 
 
That brief rise to +50 mV at point A on the axon, however, causes 
the potential to rise at point B, leading to an ion transfer there,  
12 causing the potential there to shoot up to +50 mV, thereby 
affecting the potential at point C, etc. This is how nerve impulses 
are transmitted along the nerve cell. 
 
 
The below link is a must to understand. 
 
http://physics.bu.edu/~duffy/PY106/Kirchoff.html   
  
  
	   
 


